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A keratin code defines the textile nature of epithelial
tissue architecture
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Abstract
We suggest that the human body can be viewed as of textile
nature whose fabric consists of interconnected fiber systems.
These fiber systems form highly dynamic scaffolds, which
respond to environmental changes at different temporal and
spatial scales. This is especially relevant at sites where
epithelia border on connective tissue regions that are exposed
to dynamic microenvironments. We propose that the enormous
heterogeneity and adaptability of epithelia are based on a
“keratin code”, which results from the cell-specific expression
and posttranslational modification of keratin isotypes. It thereby
defines unique cytoskeletal intermediate filament networks that
are coupled across cells and to the correspondingly hetero-
geneous fibers of the underlying extracellular matrix. The
resulting fabric confers unique local properties.
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Introduction
Textiles are fiber-based materials created by weaving or

knitting to produce porous, web-like structures. Prod-
ucts are not limited to clothing but are also found in
wound dressings, different container types, houses, and
even airplanes. Fiber texture,(i.e., mesh size, connec-
tivity, and enclosed non-fibrous substances, confers
unique properties on the respective materials. This
www.sciencedirect.com
manufacturing principle enhances stability while
allowing lightweight design and can be coupled to spe-
cific functionalities such as defined viscoelasticity,
breathability, thermoprotection, and degradability.
Fiber-based (i.e., textile-like) materials are ubiquitous

in the natural world. Biological fibers share many prop-
erties with fiber systems used in the technical world.
They are long polymers with different degrees of
deformability (bending, extension) and different di-
mensions (diameter) forming fabrics with defined mesh
size and providing large surfaces that are
functionalized (e.g., by specific binding sites). In
contrast to their technical world counterparts, however,
textile-like materials in the natural world can self-
assemble and actively re-organize. Most importantly,
they are responsive to mechanical and chemical cues

guiding development and regeneration, serving as
overall stress-protective systems, and causing pathology
when defective. The concept of textile nature has been
the basis of histology, which classifies tissues based on
the unique arrangement of different cell types. While
this overall concept has become somewhat outdated due
to its focus on mere cellular composition, we want to
revitalize it by reformulating its basic tenet. Using
epithelia and their underlying extracellular matrix as an
example, we will argue that tissue morphogenesis,
cohesion, and function are facilitated by their unique

and interconnected cytoskeletal intermediate filament
(IF)-based fiber system in conjunction with the associ-
ated extracellular collagen-based fiber system
(Figure 1). The resulting scaffolding exhibits
astounding plasticity with tunability covering multiple
length and time scales (Figure 2). It is the basis for the
enormous structural and functional adaptability of
epithelial tissues.
The keratin code defines epithelial fabric
across multiple temporal and spatial scales
IFs are certainly the most complex of the three major
cytoplasmic fiber systems that make up the cytoskel-
eton. In contrast to the actin-based microfilaments and
the tubulin-based microtubules, IFs lack intrinsic po-
larity, are highly extensible and flexible, and form

contiguous, interconnected transcellular networks in
epithelia via desmosomal adhesions [1,2]. The epithe-
lial keratin IF (KF) cytoskeleton is further diversified by
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Figure 1

Schematic representation of the fiber systems forming transcellular scaffolds in interconnected epithelial cells that are connected to other
types of fiber-based systems in the underlying extracellular matrix. The scheme provides an artificial view at the split interface between the
epithelium on top and the extracellular matrix at the bottom. To emphasize their tight connectivity in situ, linking filamentous structures are indicated
between both. The transcellular epithelial fiber scaffold encompasses the abundant keratin intermediate filaments that form 3D networks in the cytoplasm.
They envelop and contact the nucleus and are connected to each other via desmosomal cell–cell adhesions. Anchorage to the extracellular matrix is
mediated through hemidesmosomes, which bind via laminins to collagens. The extracellular matrix can be subdivided into the sheet-like basement
membrane, which is in close apposition to the epithelium, and the more reticular interstitial matrix below, both of which can be distinguished by different
collagens. The scheme further highlights that network morphology is subject to microenvironment-induced changes (compare left with right), which occur
in a coordinated fashion in the physically linked epithelial and matrix fiber systems to adapt cell and tissue function.
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the pairwise co-expression of 28 type I and 26 type II
keratin polypeptides in humans and the mouse. They
are expressed in cell type-, context- and function-
dependent combinations [3,4]. It is generally accepted

that each keratin polypeptide confers isotype-specific
properties affecting assembly/disassembly kinetics,
Figure 2

Length and time scales of fiber organization and dynamics. To understand
length and time scales must be considered. The scheme highlights the ranges
the organ level with the corresponding fiber-based structures and covering tim
processes.
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mechanical properties, and molecular interactions which
are caused in part by isotype-specific posttranslational
modifications [5,6]. We propose that the resulting di-
versity of IF cytoskeletons is fundamental for epithelial

plasticity. The tunability of epithelial properties is
thereby based on a “keratin code”. It is defined by the
the organization and functionality of the fiber-based fabric of life, different
most relevant for this review covering length scales from the subcellular to
e scales from minutes to years with corresponding pathophysiological
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specific combination of keratin polypeptides and their
unique posttranslational modification patterns at any
point in time and any position within the cytoskeleton
of a given epithelial cell. Figure 3 schematically exem-
plifies this type of keratin coding for properties and
processes that are relevant for the epidermis. The fine-
tuning of the local KF composition and modification
produces an incredibly intricate and meticulously

tailored fabric with spatially restricted unique func-
tionalities. The selected examples taken from the
recent literature serve to highlight aspects of the keratin
code and its unique functionality.

An intriguing example of keratin isotype-specificity was
recently described for the closely related type I keratins
K14 and K15, which pair with the same type II keratins
(typically K5) [7]. Airway basal cells respond to acute
and chronic injury by switching from K15 to K14. A K14
knockout in airway basal cells inhibited their differen-

tiation into ciliated adluminal cells but enhanced
clonogenicity, whereas K15 knockout resulted in the
opposite phenotype (i.e., impairment of clonogenicity
but no interference with differentiation). They
explained these opposing phenotypes by the isotype-
specific association of K14 with the tumor suppressor
stratifin/14-3-3s. K14 knockout decreased stratifin
leading to increased dNp63a oncogene expression.
Büchau and colleagues [8] unveiled keratin isotype-
specific regulation of hyperadhesion and desmosome
composition. Hyperadhesion is facilitated by desmo-

somal cellecell contacts, whereby they lose sensitivity
to calcium depletion. Desmosomal hyperadhesion is not
achieved in the absence of KFs. Expressing K14 in
Figure 3

The keratin code. The scheme depicts different aspects of epithelial plasticit
expression (color code). The resulting cell- and differentiation-dependent exp
cations (not shown) define the keratin code providing a unique identifier for a gi
of epithelial functions such as stratification, migration and response to stress
epithelial heterogeneity.

www.sciencedirect.com
keratin type I-deficient murine keratinocytes rescued
hyperadhesion, expression of K17 did not. Upregulation
of desmosomal proteins in the K17 background rescued
the hyperadhesion capability, suggesting an involvement
of keratin isotypes in the regulation of desmo-
somal constituents.

The large number of isotype-dependent posttransla-

tionally modified sites has made it difficult to elucidate
their distinct functions. This is especially true for
phosphorylation affecting multiple and possibly inter-
dependent sites in cell type- and subcellular region-
specific patterns. Using murine keratinocytes lacking
type II keratins has helped to unravel the importance of a
major phosphorylation site in the head domain of K5 [9].
Phosphomimetic mutants prevented the formation of a
KF network by interference with early assembly stages.
Conversely, phosphorylation-deficient mutants formed
KF networks with reduced turnover. Probably the best

case made for the relevance of a single posttranslational
modification was reported by Guo et al. [10]. By gene
replacement, they introduced a mutation in the K14
gene substituting cysteine-encoding codon 373 with an
alanine-encoding codon. As expected, the mutant poly-
peptide presented reduced disulfide bonding. Careful
analysis linked this to enhanced proliferation, a faster
epidermal transit time, and altered epidermal differen-
tiation. These effects were mediated via a 14-3-3
signaling pathway resulting in aberrant subcellular
partitioning of the mechanosensitive transcriptional

regulator YAP1. Findings further indicated that cell
mechanics were altered in the mutant background. The
derived model predicts that disulfide bridge-dependent
y that are characterized by different combinations of keratin isotype
ression of keratin isotypes, their abundance and posttranslational modifi-
ven epithelial cell in time and space. We hypothesize that the diverse range
relies to a large extent on this keratin code, which is reflected by intra-

Current Opinion in Cell Biology 2023, 85:102236

www.sciencedirect.com/science/journal/09550674


4 Cell Architecture (2023)
KF network re-organization, which can occur during the
transition from the basal to the suprabasal compartment,
leads to perinuclear recruitment of 14-3-3s and
consecutive cytoplasmic YAP retention.

A major challenge in deciphering the keratin code and
its functional relevance is the correlation of local het-
erogeneities in keratin composition and, more impor-

tantly, keratin modification with filament morphology
(e.g., bundling, branching), proteineprotein interaction
(e.g., desmosomal/hemidesmosomal proteins, cytoskel-
etal cross-linkers, heat shock proteins, signaling pro-
teins), and mechanical properties (e.g., viscoelasticity,
stiffness). Evidence for such heterogeneities at the
subcellular level was presented by Fois et al. [11], who
detected increased keratin phosphorylation next to
desmosomal adhesion sites. Similarly, keratin aggregates
that are either induced by pathogenic keratin expression
or by different types of stress are hyperphosphorylated

[9,12]. It will be interesting to find out, to which degree
and how posttranslational modification are involved in
the association of keratins with the cytolinker plectin,
which is known to affect keratin bundling and mesh size
[13,14] with consequences for epithelial cell me-
chanics [15].

An important feature of the keratin code is its respon-
siveness to stimuli at very different time scales. An
impressive example of a very rapid response was re-
ported by Ratajczyk [16] who showed that association of

KFs with the cytolinker epiplakin occurs within
seconds (i.e., during fixation and in response to different
stressors). The association is mediated by Caþþ-
signaling and alters the dynamic properties of the ker-
atin system. The more delayed responses occurring after
wounding and during inflammation involve changes in
keratin polypeptide synthesis. In the epidermis, these
processes are coupled to the induction of K6, K16, and
K17 ([3,5]; Figure 3). Permanent epithelial re-
structuring, which is characteristic for metaplasia,
aging, and developmental processes is also associated
with de novo expression of keratins (cf. [4]).
Desmosomal adhesion and actomyosin-
dependent tension cooperate with the
keratin code in defining local textile
properties
The stratum-specific keratin polypeptide expression in
the epidermis [4,17] suggests that the associated
changes in filament type (single -> bundled -> aggre-
gated) and filament distribution (cortical/radial ->
pancytoplasmic -> cornified envelope) are major de-
terminants of the changing basal to apical tissue texture.
Another major factor is the changing force balance [18],
which is believed to be driven by actomyosin-linked
intercellular adherens junctions whereas the adaptation
and resistance to mechanical forces are enabled by the
Current Opinion in Cell Biology 2023, 85:102236
KF-desmosome system. Thus, it has been shown that the
transition from cellematrix to cellecell adhesion is
accompanied by the reorganization of the actin system
from stress fibers to cortical actomyosin [19]. This pro-
cess requires the polarity protein aPKC, since aPKC
depletion results in the persistence of actin stress fibers
in suprabasal cells. At the same time, the physiologically
occurring KF re-distribution from the cortex to the

cytoplasm is abrogated and KF bundling is increased
highlighting the importance of actin-dependent pre-
stress for suprabasal keratin network organization [19].
The work by Broussard et al. [20] further emphasized
the contribution of the desmosome-keratin system in
this process. They observed that uncoupling of desmo-
somes and KFs delayed stratification, while, unexpect-
edly, the expression of differentiation markers
accelerated through precocious activation of the
mechanosensitive transcriptional regulator serum
response factor (SRF). They proposed that the keratin-

desmosome connection acts as a clutch to support
delamination of basal cells. In support, Thomas et al.
[21] examined keratin-desmosome crosstalk during
apoptotic cell extrusion in simple epithelial cell mono-
layers. They showed that desmosomes between
remaining cells are transiently associated with actomy-
osin cables producing junctional tension to extrude the
apoptotic cells.

The differences between the basal and suprabasal
cytoskeleton are also reflected by differences in

desmosome composition. The best-studied switch is
that from the desmosomal cadherin desmoglein 3 in
basal cells to desmoglein 1 in suprabasal cells. Even
more, ectopic expression of desmoglein 1 in basal
keratinocytes or in simple epithelial cells promotes
stratification (cf. [22]). Mechanistically, desmoglein 1
redistributes molecular tension through rearrangement
of cortical F-actin via Arp1/3-dependent actin polymer-
ization [23]. Collectively, one can conclude that the
keratin cytoskeleton provides a multifunctional matrix
that is tightly integrated across cell borders through
desmosomes forming a contiguous transcellular network

with stratum-specific properties in the epidermis,
whose architecture adapts to the local force balance via
mechanosensing. The resulting fabric is highly adapt-
able and integrates metabolic functions [24].
The epithelial and extracellular fiber
systems are mechanically and functionally
connected
The fabric of the epithelial fiber systems differs pro-
foundly from that of the underlying extracellular matrix
(ECM). But both are physically linked via hemi-
desmosomes, which have been classified as composi-
tionally distinct type 1 in stratified and pseudostratified
epithelia and type 2 in simple epithelia. Both types are
attached to the basement membrane by binding to
www.sciencedirect.com
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trimeric laminins, which form reticular sheets and are,
in turn, attached to the collagen type IV network.
Integrin a6b4 and the bullous pemphigoid antigen
BP180 of type 1 hemidesmosomes interact with laminin
332 [25]. Type 2 hemidesmosomes can also interact
with a5-containing laminins (i.e., laminins 511 and
521) [26].

Conditional removal of laminin 332 provided compelling
evidence for the fundamental role of type 1 hemi-
desmosomes in the maintenance of epidermal homeo-
stasis in the adult skin [27]. It induced epidermal
thickening and increased desquamation as a conse-
quence of a modified differentiation program of basal
keratinocytes. This was reflected by major changes in
keratin expression (i.e., increased synthesis of K6a, K6b,
and K16) and by increased cornified envelope proteins
and cellular stress markers. Furthermore, disorganization
of the actin cytoskeleton and cell shape were

readily apparent.

In a similar vein, the laminin a5 chain has been shown to
regulate keratin expression and the differentiation state
in mammary epithelium [28]. Binding of K5/K14-
positive basal cells to laminin a5 induces their differ-
entiation into K8/K18-positive luminal cells, requiring
b4 integrin and further downstream signaling. These
findings are in line with a study on mammary cancer-
derived epithelial acini [29] showing that their malig-
nant transformation occurs only in the absence of a tight

hemidesmosomal connection between the ECM and the
keratin network. It further demonstrated that the lack
of hemidesmosomal integrin clustering is regulated by a
complex interplay between matrix stiffness and laminin
density. While lowmatrix stiffness allows clustering, stiff
matrix prevents it and can be rescued by increasing
laminin density.

It is becoming increasingly evident that cellecell and
cell-ECM adhesion together with mechanical feedback
cycles regulate epithelial function and mechanical ho-
meostasis (cf. [30]). Mechanical homeostasis relies on

the dynamic equilibrium of tensile forces transmitted
between neighboring cells and the ECM. This equi-
librium is based on the active regulation of the cyto-
skeleton and its associated junctions, which impact
gene expression through their connection to the nu-
cleus [31]. Fujiwara et al. reported that keratin net-
works regulate mechanotransduction through a Rho
signaling pathway upstream of cell-ECM adhesion for-
mation and organized cell migration, a pathway relevant
to the pathogenesis of Epidermolysis bullosa simplex
[32]. Recent data further indicate that the 3D organi-

zation of the keratin network is guided by cues from the
ECM [33,34]. Sensing ECM rigidity is facilitated by
crosstalk between the keratin and the actin cytoskel-
eton. Laly et al. [35] demonstrated that the K14
network adapts to ECM stiffening in an F-actin-
www.sciencedirect.com
dependent fashion by becoming more bundled and
rigid. Further evidence for the pivotal keratin-actin
crosstalk in the mechanotransduction of ECM rigidity
was provided by Wang et al. [36], who reported that
keratinocytes lacking integrin a6b4 exert reduced
traction force and implicated the cytoskeletal linker
plectin in this process. It has been proposed that
plectin is involved in the F-actin-dependent organiza-

tion of the keratin network into a circumferential
subcortical rim and the radial keratin spokes both of
which are attached to desmosomal adhesion sites
[15,35,37]. Genetic removal of plectin resulted in the
loss of the circumferential rim and increased mechani-
cal fragility of cell sheets [15].

The keratin-actin crosstalk also plays an important role
in epithelial cell migration on different matrix types.
While actin together with focal adhesions has an
exploratory probing function testing ECM stiffness and

composition, keratins follow the actin system and fulfill
a stabilizing function. The observed inward-directed
keratin flow is always slower than the retrograde actin
flow [38]. Coordination of both allows efficient directed
migration. Keratins therefore provide a templating
function: They reduce the speed of migration but in-
crease its persistence [38,39]. In the presence of lami-
nin 332 hemidesmosomes are preferentially formed at
the leading front of migrating primary keratinocytes
generating characteristic chevron-like structures [40].
These chevrons are laterally flanked by focal adhesions.

Together, they are subject to treadmilling: Focal adhe-
sions appear first at the leading edge. Hemidesmosomal
chevrons subsequently form between paired focal ad-
hesions. They extend ribbons of focal adhesion-flanked
chevrons which serve to translocate the cell body for-
ward. At the cell rear, focal adhesions and hemi-
desmosomal chevrons disassemble in reverse order. This
arrangement was detected most prominently in leading
cells of collectively migrating cell sheets [40].

In addition to the hemidesmosome-mediated direct
association of epithelial cells to the basement mem-

brane, the interstitial matrix underneath is also inte-
grated into the pervasive and interactive scaffold that we
refer to as the fabric of life. In some epithelia, such as
the cornea and skin, collagen type VII hooks onto the
fibrillar collagens type I and III of the interstitial matrix
and binds collagen type IV and laminin 332 in the
basement membrane forming structures referred to as
anchor fibrils [41,42]. Interestingly, interstitial matrix
changes impact basement membrane thickness and
stiffness in the skin [43]. These changes lead to a
reduction of chromatin accessibility in the stem cells of

hair follicles resulting in progressively reduced regen-
eration potential [44].

We are currently far away from a complete understand-
ing of subepithelial ECM heterogeneity, although
Current Opinion in Cell Biology 2023, 85:102236
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several efforts are underway to systematically explore its
biochemical diversity in relation to topology and func-
tion at different interfaces [45,46].
Future perspectives and challenges
A comprehensive view of the interconnected fiber sys-
tems of the human body is needed to understand tissue
morphogenesis, remodeling, and malformation as
fundamental determinants of functional tissue differ-
entiation, homeostasis, and malfunction, respectively. It
requires multimodal measurements of morphological
features, their biochemical composition, and mechanical
properties. These analyses are needed at different

lengths and time scales to understand emergent fea-
tures of the keratin code and its impact on the func-
tionality of the epithelial fabric (Figure 2). To detect the
underlying mechanisms, tools have to be refined and
adjusted for the examination of filaments at the sub-
cellular level, networks at the cellular level, transcellular
scaffolds at the epithelial tissue level, and their
connection to the ECM fiber systems at the organ level.
The analyses will help to understand acute responses
occurring after wounding and in various acute stress
situations, chronic responses that are induced, for

example, during inflammation, and long-lasting perma-
nent responses that take place during development,
chronic stress, and aging.
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